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Necessary and sufficient conditions are established for exact linearization of 

nonlinear autonomous second order differential equations, using the nonlinear 

transformation of the function and the independent variable. The problem of 
the calculus of variation of determining trajectories of a point in a conservative 

field, the Lotki-Volterra system which defines dynamics of two interacting 
biological populations, dynamic systems with separated variables, and dynamic 

systems of the Liouville type are considered as examples of proposed method 
applications. 

1. Statement of the problem and general results. 
Let us consider the autonomous nonlinear second order differential equation 

N (Z) G Z” + f (+‘” + cp (X)Z. + 9 (X) = 0 (1.1) 

and construct the class of equations of the type (1.1) which depends on two arbitrary 
functions, and whose solutions are expressed in terms of quadratures. The construction 
is realized on the premise of the following meaning of exact linearization. Using the 

transformation of dependent and independent variables 

r --f x = v-1 (X)X, dt + dt = u (x)dt (1.2) 

u (z (t))u (z (t)) # 0, Vt Es I = {t 1 a < t 6 b} 

the sought class of equations of the type (1.1) is reduced to the preassigned linear 

autonomous form 

X” + b,X’ + b,X + c = 0, b,, b,, c = c,onst, (‘) = d / do (1.3) 

As.the result of linearization, the investigation of the nonlinear equation of the type 
(1.i) in the plane of variables (2, t) reduces to the analysis of the linear equation 

(1.3) in the plane (X, T) , and the application of inverse transformation of (1.2). 
Linearization by transformation of the unknown function was used in [l], and by 

transformation of the independent variable was applied in [2-41. Individual examples 

of [equations ofl type (1.1) were considered in [S-8]. 

T h e o r e m 1. For reducing Eq. (1.1) to the form (1.3) by transform (1.2) it 
is necessary and sufficient that (1.1) can be factorized in terms of first order operators 

of the form 

( 0 ;* -- - rsu - $) (D - $ - ,,u) J: +-.cu’u = 0, D=$ (1.4) 
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(here the operators are generally noncommutative) or that (1.1) could be factorized in 
the form 

(U-ID - u-lu-iu’ - r,)(u-lD - ~J-~zI-QI’ - rl)x + c7j = 0 (1.5) 

using commutative operators. In this equation u’ = v*z’, u’ = u*z’, and (*) = 
d / dx, rk are roots of the characteristic equation 

r? + b,r + b, = 0 (1.6) 

The proof of Theorem 1 is similar to that in [9, lo] of the corresponding theorem 
for linear nonautonomous differential equations using the method of differential operat- 
or factorization. 

T h e n e c e s s i t y. Let the application of (5.2) to (1.1) yield formula (1.3) 
which we write in the form 

(D, - r,)(& - rr)X -l- c = 0, D, = d I dT (197) 

Multiplying the left-hand side of (1.7) by u2u, using transform (1.2), and applying to 
the obtained expression the operator identity 

(U-ID - Q.) U1-W --_ u-$_J-~~k 

Lh-=D-$-rlc~-(k-l)$, k-l,2 

we obtain (1.4). 

The sufficiency. Letusapply(1.2)to(l.4)andusetheidentity 

L&% = U% (D, - rh.), k = 1,2 

This brings (1.4) to the form 

u2v (& - r,)(D, - rJX + cu2u = 0 

from which follows (1.3). To pass from expansion (1.4) to (1.5) it is necessary to 
apply successively the operator identity 

u-kLL = (u-ID - (vu)-lv’ - rk)u-l(-l 

The commutativity of operators U-ID - (vu)-‘v’ - r’k can be tested directly. To 
prove the theorem it remains only to point out that condition (1.5), as well as (1.4), 

is not only necessary but also sufficient, 
The above theorem indicates the analogy between the linearizable nonlinear auto- 

nomous equations of type (1.1) and the algebraic equations (1.6). Previously [9,10-J 
the method of factorization resulted in the establishment of analogy also for linear non- 
autonomous differential equations that are reducible to equations with constant coeffici- 

ents. 

Lemma 1. If (1.1) can be linearized by (1.2), the following expansion holds; 

EN (x) s Ex” - Fxe2 + Gx’ + H (lo*) 

v # ax, E = 1 - v-Vx, F = (2vW+ + u-lu*)E + xv-W* 

G = b,uE, H = b&x + cvu2 
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To prove this it is sufficient to multiply out the differential operators in formula (1.4) 

i e m m a 2. The general solution of the nonlinear autonomous second order 
equation 

V** - zv-‘?I”” + (2x-l - u-Q.&* - f)v* + z-1 (u-luf + f)v = 0 (1.9) 
f = f (41 v+az+b 

is of the form ( a and fi are arbitrary constants) 

v (x) = Z[CZ + fi J u exp (i +kj fk]-” (1.10) 

P I o o f. The substi~tion v = v-l reduces Eq. (1.3) to the linear nonautono- 
mous form 

v** + 
i 
f_$+*-” 

X i (1.11) 

which admits the factorization 

Hence the general solution of (1.11) is of the form 

V = &[a+ pjuoxp(Jfdz)dz] 

where CC and 0 are arbitrary constants, and consequently D (5) satisfies the relation 
(I. 10). 

T h e o I e m 2. For Eq. (1.1) to be linearized by transformation (1.2) it is 
necessary and sufficient that it is representable in one of the following forms: 

x” + fx'" + b,tpx’ 4 A, (cp, x) = 0 

&(cp,s) = rpexp(- sldx) [&OS vxp(~ fds) dx + +] 

(1.12) 

x** - 
i 
_L+?E) 
ax +- 5 

5’2 + b,rpx’ + A2 (cp, x) = 0 (1.13) 

A, (cp, 2) = ‘p2 (ar -I- b)b-l RJ,X + c (as + b)l 

Equations (I.. 12) and (1.13) are reduced to (J..3), respectively, by the transform 

XI (4 = B s cp exp (j f&) dz, dt = cp (z)dt 

xa (4 = x / (ax + b), b # 0, dz = cp (x)dt 

p r 0 0 f. we write (1.9) in the form 

@v-W + u-‘zP)(l - p-$,9.@ + xu-lv*+] / (1 - v-%*5) = f 

setting in formula (1.10) a = 0 and ‘p ZF u (x) and substituting the expression 
for X, in (1. S), we obtain (1.2). Equation (1.13) is obtained by the substitution 
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into (1.8) of the expression 

v=ux+b, b#O (l.14) 

C o r o 1 1 a r y 1. The general solution of Eqs. (1.12) and (1.13) can be 
represented in the parametric form 

r-1 # ~2 j: 0, Xi - C, exp (r-r%) + C, exp (r2r) - c/b0 (1. 15) 

rr=ra== -bi/2+0, Xi-~exp(-bl~i2)(Clz+Cz)-c/b6, 

rl I= 0, r2+0, Xi I-= C, + Cz exp (- b,t) - &,-la 

7.1 = 1’2 = 0, x; -C1$-C2T- ++ 

bl = 0, b. > 0, Xi = A sin (J&z + B) - c/ho 

bl = 0, bo < 0, Xi ‘= A sh (f- b0 z + 61) - c/b,, 

i-3,2; f rz ’ C&Y 
a (0 (5 (V) 

where C,, C,, A, and B are arbitrary constants. 
Note that the general solution of Eqs, (1.12) and (1.13) obtained by the elimina- 

tion of parameter r from Eqs. (1.15) are nonlinear functions of two arbitrary constants. 

Corollary 2. If c = 0, Eqs. (1.12) and (1.13) have one-parameter 
solutions (k = 1, 2) 

Tk;f _I- Cf’ : 1 I 1, Ii == h(x) = ffdx (1.16) 

(1.17) 

where Cf’ is an arbitrary constant which for i = 1, 2 satisfies the respective first 
order equations 

. 
J: -i*~exp(-_S~x)S~exp(~Idx)clrc=O 

(1.18) 

. 
x - r&-lx (UJ: .+ b) cp = 0 (1.19) 

where 0 are simple characteristic roots of (1. S), and when (1.6) has multiple roots, 
they are solutions of the form 

-$-t+(k --1)~~fCE’;:I~, i=1,2 (1.20) 

where IZ (t) is the inversion of the integral for t in (1.15). 

p r o o f. Equations (1.12) and (1.13) are equivalent to factorization of (1.15) 
with c = 0 to which for r-i + ra corresponds the system of first order equations 

(1 - u%*5) 5’ - Q&J: = 0, k.= 1,2 

From this, when rb zz cp , on the strength of (1.10) or (1.14) we obtain, respectiv- 

ely, Eqs. (1.18) and (1.19) Let now r, = r, = -b, / 2, Then the relations 

exp(---r/2)+ -- Xi(+),, T = j+q(x)dt, k = 1,2 (1.21) 
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are valid, and from them follow formulas (1.20). 
To illustrate this we consider two examples. 

E x a m p 1 e 1. Let us consider the equation 

5” + 3xX’ + 9 = 0 (1. 22) 

which occurs in investigations of univalued functions defined by second order differen- 
tial equations [ll]. This equation belongs to the class (1.12), where 

f (2) = 0, up (x) = x, bl = 3, c = 0, p = 2, and b0 = 2 

and admits the factorization 

(D - r&(D + 5’ / x - rlx) x s 2 (5” + 3~s’ + r3) 

obtained from (1.8) for u = x-l and u = x (rr and r, are roots of the characteris- 
tic equation ra + 3r f 2 = 0). Let rl = -2 and r, = 4. Then the one-para- 

meter solutions of Eq. (1.22) by virtue of (1.16) are of the form 

x=l/(r+c), x=2/(tfc) (1.23) 
Note that solution (1.23) does not appear in [ll]. 

The substitution x4 = X, dz = xdt reduces Eq. (1.22) to the linear form X” + 3X’ 
f 2X = 0 from which on the strength of (1.15) we have 

z = & [Cr exp (- 2~) + (=2 exp (- T)]‘/~, 
’ at 

t = 
s 

F (1.24) 

where C, and C, are arbitrary constants. 

If Cs#O 
5 = + exp (-z)(C, + C, exp 2)‘/2, t = &2C,+ (C, + C, exp r)Ij2 - k 

where k is an arbitrary constant. Eliminating parameter z and using the notation 
2k = b and ka - 4C, I C,2 = C, we obtain a two-parameter set of solutions x = 

(2t + b) I ( t2 i- b[ f C). If C, = 0 (1.24) yields formula (1.23). 

E x a m p 1 e 2. We consider one-dimensional motion of a particle along the 
axis. Let M be the mass of the central body and m the mass of a particle. The 

equation of one-dimensional unperturbed motion of the particle and the energy integ- 

ral are of the form 

5’. + x’s / 2x + hk / x = 0, hk = k2 / x - xn2 / 2 (1.25) 

where hl, is the Keplerian energy kz = C (M + m) and G the gravitational constant. 

Equation (1.25) has a singularity at x = 0. It is reduced by the transformation x = 

-V/Y, dt = X-ldt to the form of the linear harmonic oscillator y” f hkY / 2 = 0. 

Thus the method of exact linearization makes possible the regularization of differen- 

tial equations. A more cumbersome method was used in [l2] for linearization. 

c o r o 1 1 a r y 3. General solutions of Eqs. (1.12) and (1.13) for (.bI = 0) are 
represented, respectively, by the following two relations between t and 5: 

--!L’ 
t = * v/1-q s exp [A (41 dx 

[A,Jr(clb,+X1(2))21"~ 
+ -42 

(1.26) 

s dX 

cp (ax + V2 [AI T (c / 4, + XZ (4)21”’ 
+ A2 
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where A r and A 2 are arbitrary constants and the signs plus and minus in the radi- 
cands correspond, respectively, to bO > 0 and b, 6 0. 

P r o o f. Solutions (I.. 26) of Eqs. (1.12) and (1.13) are obtained by eliminating 
parameter r from the last three of formulas (1.15). 

Theorem 3. 1) The kernel u (CC (t)) and multiplier U (CC (t)) of transform 
(1.2) which linearizes Eq. (1.12) satisfy the respective equations 

U” + E fu>) U.‘? + b$U’ + @*-%a (u, a,) = 0 

u” + E (F) U.2 + blip (F) u’ + P”-lf$ (q! (F), F) = 0 

E (y) == y*-ly** + f(y) y* 
where in the first equation (*) := d / du, x = @ (u) is a function inverse of U = 

fp (z), and in the second (*) = d / dv and x = F (u) represents the inversion 

of the expression 

U(X) :-= +J[Ft?xp (Jrdzjdrl_l 

2) The kernel u (X (t)) and multiplier v (5 (t)) of transform (1.2) which linear- 

izes Eq. (1.13) satisfy the respective equations 

P r o o f. Part 1 is proved by substituting 1c = @ (u) and 5 = F (u) into Eq. 

(1. 12), and 2) is proved by substituting x = CD (u) and x = (V - b) / a into 

Eq. (1.13). 
The following theorem whose proof is obtained by direct substitution shows that the 

term containing the square of derivative can always be eliminated from Eqs. (1.12) 

and (1.13). 

T h e o r e m 4. The transfotms 

5 = s(v), s* =; exp (- adds) 
s* = (us + by cp (s), (*) = d I&i 

reduce Eqs. (1.12) and (1.13) to respective equations of the Lienard type, 

2. Lfnesrfzation of certain clarier of dynamic 
8 y s t e m 8, Let us consider the following classes. 

1”. The class of equations 

5 *. - rp*rp-‘s’s + b,g?x’ + cp2 (b$ + e I B) = 0 
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that can be linearized by transformation of the independent variable. The respective 
transform is of the form X = @x, dz = cpdt. 

2”. The classes of dynamic systems of the type (1.1) equivalent to (1.12) in 
which functions f (3) and II, (2) , or rp (z) and -$ (z) ace taken, respectively, as 
the independent variable. 

Let f (I) and II, (z) be arbitrary functions. The corresponding class of dynamic 
systems is defined by the equation 

x” + fx’s + b161 + b& = 0, b, # 0 (2.1) 

S2 = Ip exp (h (x))fZ \$ exp (2h (x)) d$‘:q 

linearized by the transform 

X = [2 !I# exp (2n (2)) dz]“‘, dt = s2dt (2.2) 

where h (3) is defined in (1.17). 
One more class of dynamic systems with arbitrary f (4 and 2p (5) is defined by 

the equation 
2” + fxsa + b,~# exp ( Sfdz) 5’ + cj3-1* = 0 (2.3) 

which can be linearized by the transform 

X =~~~~~~~s j&)dz, dz=$eexp (1 f&z,) dt 

Finally, the class of dynamic systems with arbitrary tp (z) and 9 (z) is defined 
by the equation 

- 5 + $) x.2 + b,cps’ + I# = 0 

which can be linearized by the transform 

X=exp(b,S+d+ dz=qddt 

3”. An important class of dynamic systems is defined by the equation of the form 

0” + fir.2 I a%@ = 0 (2.4) 

which be transform (2.2) is reduced to the linear equation 

X” * aaX = 0 (2.5) 

By corollaries 3 and 1 (see Sect. I.) Eq. ‘( 2.4) has the first integrals 

zJ=as(CT2J$exp(2S fd+)dx)exp(-Z[Ids) (2.6) 

and in addition admits the one-parameter solutions 

(2.7) 

where C is an arbitrary constant and Q is defined by formula (2.1). 

E x a m p 1 e 3 [13]. Let us determine the first integrals and one-parameter sets 
of solutions of equation 
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In conformity with (2.6) and (2.7) the first integrals and one-parameter solutions 
of Eq. (2.8) are of the form 

2’2 E.z 1 - 52 -+ c (s-2 - l)W, s 1/-l ;l-x2 __ _ =*t1/--t+c 

Hence Eq. (2.8) has periodic solutions of the form 

z = sin (t + C), t .= cos (t + c) 

4”. A particular case of Eq. (2.4) is provided by the problem of variational calcul- 
US on the determination of trajectories of a point moving in a conservative field, for 
which Euler’s equation reduces to the form 

Y” + f (if) iP -I- f (.?I) = 0 

5”. Linearization is also possible in special cases of dynamic systems of the form 

z:‘= p (51, 52) I x2’ = 0 (x1, 22) 

which by the elimination of variables are reduced to equations of the form (1.12) and 
(1.13) or to Eqs. (2.1)-( 2.3) that are equivalent to (1.12). To eliminate variables 
(separate motions) in nonlinear systems we use the method of resultant of differential 

polynomials. 
For example, the Lotki-Volterra system [14] 

xi’ = CQX~ + B~x~x~+I, CQ, f3i = const, 1’ --L 1, 2, i f- 1 G 0 (mod 2) 

which defines the dynamics of two interacting biological populations reduces to the 
system of second order equations 

Xi” - .$-lxi’2 - (ai+,+ Pi+lZj) li’+ aiXi (ai+l-f- fii+lXi) = 0, i = I, 2 (2.9) 

which belong to class (1.12). 
For the derivation of (2.9) we consider the auxilliary system 

from which follows formula (2.9) for the resultant. 

6”. A particular class of dynamic systems that are solvable in quadratures is re- 
presented by systems with separated variables for which the kinetic and potential energ- 

ies are defined by I( 11 

T=+ 
c ‘i (qi) Q<‘*, u=- 

c di (qi) 
i-1 i=l 

where qi are generalized coordinates. 
The Lagrange equations of such systems reduce to equations with separated variabl- 

es of the form 
i ai* 

q :- -I- 2 7 qia* + $ di* = 0, i = 1, . . ., n, 
d 

1 (“) =-q- (2.10) 
2 1 
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which by transform 

Qr = J/9& dz liz; i+* (2i&“f~& 

is reduced to the system of linear equations Qi” + Qi = 0, (‘) = d I dr, that are of 
the form (2.5). Using formula (2.6) we obtain for the first integrals the following 
dependence of qi on t: 

dt = +a*i~* (Et - Zd,)-‘/l aqi 

3. Linearization of Liouville systems. Let usconsider 
the Liouville systems [X&16] for which the kinetic and potential energies are, respect- 
ively, of the form 

T=~b~q)~ai~qf)q*fz, iy-pg$ b(C7) = 2 bf(qi) 

f=l f=l i=l 

Taking into account the energy integral T - U = h we obtain on the strength of 
Lagrange equations the system of differential equations 

9i” + C 
+ &+a;1 g + b-1 $1 qi’ - b-%-1 -&- (& - di) = 0 (3.1) 

z 

If the coefficients at Q’i in Eqs. (3.1) are assumed to be functions of t, it is poss- 
ible to consider the left-hand of each of Eqs. (3.3) as the sum of two expressions, of 
which Qi” + (1/2qt’at%zl / dqi + b”“db I dt) is linear and autonomous, and 

b-%,-ld (hbf - d,) f dqr nonlinear. 
We apply to (3.1) the method proposed in 1171 for reduction to autonomous form. 

Using transform 
d-ci = b-l (q) a;“’ ( qi) dt (3.2) 

we reduce system (3.1) to the system of equations 

daq, I dZi2 - d (hbi - di) I dqi = 0 (3.3) 

which belongs to class (2,4), and transform 

Qi = f2(hbi -di), dzi =: -_Jf2(hb$-di) ds 
i 

reduce it to the linear system 

Qi" - Qi = 0, (‘) = d ,’ ds 

By virtue of (2.6) solutions of (3.3) are defined by formulas 

dTt = +[2 (hi + hbi - di)]-“tdqi 

From (3.2) and (3.4) we also obtain the known system of first integrals 
71 

(3.4) 

and the known relations 
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In concluding we point out that the method of exact linearization can be extended to 
scalar and vector nonlinear differential equations of the second and higher orders, both 

autonomous and nonautonomous. 

The author thanks V. V, Rmniantsev at whose seminar the basic results of this 
work were presented and, also, G. N. Duboshin for drawing the author’s attention to 

paper c81= 
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